

What's New with CHEMKIN

Ellen Meeks

4th Biennial International Workshop on CHEMKIN in Combustion
Chicago, IL
July 25, 2004

Outline

- What's New with CHEMKIN 4.0
 - New user interface
 - Reactor network diagrams
 - New and enhanced reactor models
- Introducing KINetics/API
- Model Fuels Consortium initiative
- Future of this Workshop

CHEMKIN 4.0 has arrived

- New Graphical User Interface
- Visual linking of modules to form reactor networks
- New transient simulation capability
- Expanded plug-flow capability
- Expanded partially stirred reactor capability
- New reaction-rate types
- And much more...

Users can build reactor networks through a visual interface with array of reactor models

Customizable palette of reactor modules

Drag and drop diagramming tool for reactor networks and series simulations

Model of a two-stage combustor demonstrates one use of reactor networks

Diagram for simulation easily built in User Interface

Descriptions of reactor configurations are through context-specific panels

• (No keywords required!)

Project tree with links to input panels

Input panels guide problem set-up and execution

Templates for Reactor Models guide user inputs for problem-specific applications

Reactor Models include:

	Non-reactive Gas Mixer
	Chemical and Phase Equilibrium Calculations
	Mechanism Analyzer
	Closed Internal Combustion Engine Simulator
0	Closed Homogeneous Batch Reactor
	Closed Partially Stirred Reactor
(S)	Closed Plasma Reactor
S	Perfectly Stirred Reactor (PSR)
(S)	Plasma PSR
	Partially Stirred Reactor (PaSR)
-	Plug Flow Reactor

*****	Honeycomb Plug Flow Reactor
	Plasma Plug Flow Reactor
3	Planar Shear Flow Reactor
	Cylindrical Shear Flow Reactor
**	Premixed Laminar Burner-stabilized Flame
8	Premixed Laminar Flame-speed Calculation
111	Diffusion or Premixed Opposed-flow Flame
☆	Stagnation Flow CVD Reactor
4	Rotating Disk CVD Reactor
	Normal Incident Shock

Users have a wide array of options in physical units for input parameters

SI, cgs, British, and user-customized options

Online Help includes context-sensitive bubble help, HTML, and PDFs

HTML Help for overview of GUI features

In-depth user manuals

Quick- reference, mouse-over "bubble" help

Diagnostic messages

User manuals have been reorganized to accelerate the CHEMKIN learning curve

- Installation and Licensing
 - System Administrators guide to installation and license setup
- Getting Started using CHEMKIN
 - Overview of the new user interface, post-processing, and command-line scripting
- Program Input
 - Detailed description of all user input parameters, including reactor, kinetic, thermodynamic, and transport data
- Tutorials
 - Problem-oriented samples
- CHEMKIN/API
 - Programmer's guide for linking external programs to CHEMKIN
- Theory
 - Underlying equations, assumptions, and references

CHEMKIN plug-flow capability has been greatly expanded

- Sensitivity analysis as function of distance
 - Species, temperature, and velocity
 - Gas-phase reaction rates
 - Surface reaction rates
- More robust solver
- More easily linked to other reactors
- Restart and continuation options
- Radiation exchange with external environment

New plasma plug-flow reactor for plasma abatement and downstream-etch applications

- Power can vary along length of channel
- Electron energy equation to determine mean electron temperature
 - Under plug-flow assumptions
- Electron and ion driven reactions
- General plasma-surface reaction capability

Honeycomb reactor model allows users to specify catalyst monolith properties

 Active surface area for catalytic reactions calculated automatically from catalyst specifications

New transient stagnation-flow and rotatingdisk reactor models

- Atomic layer deposition
- Multiple inlet streams
 - Different temperatures & compositions
 - Different velocities
- Inlet streams vary as function of time
 - Pulsed or cycled
 - User-specified flow-rate profiles
- Robust alternative to reach steadystate for difficult problems

Network of homogeneous reactors (PSRs) can now include heat transfer between zones

- General heat exchange capability
 - Radiation
 - Conduction or convection
 - From any reactor to any other reactor

Transient (PSR) reactor networks can account for solid wall heat capacity

- Allows simulation of complex systems with heat and mass balance
- User specified heat-capacity for wall

Transient plug-flow can be modeled with a series of PSRs

- Heat capacity can be included
 - e.g., to reproduce lag of catalyst bed temperature
- Diffusion and conduction upstream can be modeled through heat-transfer coefficient between PSRs

The Partially Stirred Reactor capabilities have been expanded

- Reactor can be characterized by any combination of volume, flow rate, residence time
- Volume can be specified as a function of time
- Multiple inlet streams are allowed
- A PaSR reactor stream can be initialized by a previous PaSR solution
- Closed-system PaSR model
- Users can request output of probability-distribution functions and scatter-plot data for any number of variables

We have improved management of very large chemistry mechanisms

- User may filter sensitivity data prior to running
 - By species name
 - By relative "tolerance" value
 - Greatly reduced solution-file size and post-processing time
- GetSolution post-processing utility enhanced
 - Generates plain text files for import/export
 - User filtering options for data export
 - Access from Graphical User Interface
- Improvements to transient solver
 - Added solver method options
 - Optimized solution strategy for closed reactors
 - 10X+ speed-up in sensitivity analysis

New reaction rate formulations provide added flexibility in describing chemistry

- Langmuir-Hinshelwood & Eley-Rideal surface-reaction formulations:
 - Example:
 A + B ⇒ C + D

rate =
$$\frac{k' C_{A} C_{B}}{\left(1 + K_{A} C_{A} + K_{B} C_{B} + K_{C} C_{C} + K_{D} C_{D}\right)^{2}}$$

- Users enter k', K_A , K_B , etc. directly
- No user subroutine required
- Allows direct use of plant data as well as comparison of detailed and global rate expressions
- New pressure-dependent reaction-rate formulation from Sandia National Laboratories
 - New mechanisms from J. A. Miller at Sandia Nat'l Labs
 - Interpolation of rates that are provided at several pressures

KINetics/API and links to 3rd-party Programs

Many problems require treatment of complex geometry and mixing limitations

The KINetics module provides CHEMKIN technology as a plug-in to other programs

- Built-in transient and steady-state solution algorithms for CFD as well as 1-D flow-system modeling
 - Algorithms handle "stiff" chemistry within CFD
 - Accurate prediction of trace species
- Object-oriented modules with well documented API for linking to other programs
 - C++, C, F90, and F77 interfaces available
 - Dynamically linkable at runtime
- Complete compatibility with CHEMKIN
 - Thermochemistry and molecular transport
 - Gas-phase reactions
 - Gas-surface reactions on walls and in porous media

Link between STAR-CD and KINetics has been commercially available since 2001

STAR/KINetics Solver Predicts NO_x

¹Anderson, D.N., NASA-TM-X-71592, 1975 ²Deur, J.M., et al., AIAA Paper 94-3895-CP, 1994

Link between FLUENT and KINetics is scheduled for release in Q4'04

KINetics/API can be used to link to other 3rd-party and in-house tools

- Cell-by-cell simulation of chemistry allows robust treatment of stiff combustion and pollution-formation kinetics
- Allows linking to
 - Company in-house tools
 - Commercial CFD tools
 - Matlab or other mathematical simulation tools
 - 1-D engine-simulation tools
 - etc.

Model Fuels Consortium Initiatiave

Reaction Design is initiating an industrydriven consortium for engine simulation

- Designed to serve as a bridge to NIST Real Fuels and other database and mechanism development activities
- Focus on software tools and validation of mechanisms needed for practical engine simulation
- Based on premise that surrogate components can be identified to represent real-fuel mixtures

The consortium will focus on immediate payback from existing methodologies

- Commercial-grade software tools for analysis and simulation
- Mechanism assembly for detailed kinetics
 - Collaboration and partnerships with research groups
- Validation
 - Validation and optimization based on relevant engine and controlled experimental conditions
 - Experimental comparisons between surrogate and real fuel mixtures
- Mechanism reduction for practical engine design
 - < 50-100 species
 - Tools for automated mechanism reduction
- Coordination with NIST and other groups to bring in new science as it is developed
 - Funnel industry priorities to researchers

The consortium will drive tool and mechanism development for targeted applications

Mechanism **Engine-**Reduction and simulation tools **Analysis tools Client proprietary Reduced models** mechanisms **Mechanism Database**

Collaborative Database Infrastructure

Expected start in Q4 '04

- Potential members include
 - Engine companies
 - Fuels and lubricants companies
 - Tier-one automotive suppliers
 - Government agencies
- Academic advisors
 - Prof. Anthony Dean, Colorado School of Mines
 - Prof. William Green, Massachusetts Inst. of Technology
 - Prof. Mitsuo Koshi, Tokyo University
 - Prof. Ulrich Maas, Universität Karlsuhe
- 3-Year project timeline

Future of this Workshop...

Questions we have for you

- Long-term goals for this workshop
 - Keep venue at Combustion Symposium?
 - Establish more regular "user-group" meeting?» Where and when?
 - What format is best for the workshop?
 - What topics would you like to see covered?
- How can we help vitalize a Teaching-with-CHEMKIN forum?
 - On-line or face-to-face meetings?
 - How to seed exchange of sample problems?

Please fill out the survey to help us plan accordingly

